Consider the following statements
$P :$ Suman is brilliant
$Q :$ Suman is rich
$R :$ Suman is honest
The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as
$\; \sim \left( {{\rm{Q}} \leftrightarrow \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right)} \right)$
$ \sim {\rm{Q}} \leftrightarrow {\rm{\;}} \sim {\rm{P}} \wedge {\rm{R}}$
${\rm{\;}} \sim \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right) \leftrightarrow Q$
$\; \sim P \wedge \left( {{\rm{Q\;}} \leftrightarrow \sim {\rm{R}}} \right)$
Which of the following is not a statement
The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to
If the Boolean expression $( p \wedge q ) \circledast( p \otimes q )$ is a tautology, then $\circledast$ and $\otimes$ are respectively given by
$(p \to q) \leftrightarrow (q\ \vee \sim p)$ is
Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is