Mathematical Reasoning
easy

Consider the following statements 

$P :$ Suman is brilliant

$Q :$ Suman is rich

$R :$ Suman is honest

The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as 

A

$\; \sim \left( {{\rm{Q}} \leftrightarrow \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right)} \right)$

B

$ \sim {\rm{Q}} \leftrightarrow {\rm{\;}} \sim {\rm{P}} \wedge {\rm{R}}$

C

${\rm{\;}} \sim \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right) \leftrightarrow Q$

D

$\; \sim P \wedge \left( {{\rm{Q\;}} \leftrightarrow \sim {\rm{R}}} \right)$

(AIEEE-2011)

Solution

Negation of Biconditional Statement-

Negation of $p \Leftrightarrow q$ is disjunction of negation of implication $p \Rightarrow q$ and the negation of implication $q \Rightarrow p$

Given statement is

$(P \wedge \sim R) \leftrightarrow Q$

which is same as

$Q \leftrightarrow(P \wedge \sim R)$

since it is a biconditional statement

Hence negation is

$\sim(Q \leftrightarrow(P \wedge \sim R)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.