Consider the following statements 

$P :$ Suman is brilliant

$Q :$ Suman is rich

$R :$ Suman is honest

The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as 

  • [AIEEE 2011]
  • A

    $\; \sim \left( {{\rm{Q}} \leftrightarrow \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right)} \right)$

  • B

    $ \sim {\rm{Q}} \leftrightarrow {\rm{\;}} \sim {\rm{P}} \wedge {\rm{R}}$

  • C

    ${\rm{\;}} \sim \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right) \leftrightarrow Q$

  • D

    $\; \sim P \wedge \left( {{\rm{Q\;}} \leftrightarrow \sim {\rm{R}}} \right)$

Similar Questions

Which of the following is not a statement

The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to

  • [JEE MAIN 2019]

If the Boolean expression $( p \wedge q ) \circledast( p \otimes q )$ is a tautology, then $\circledast$ and $\otimes$ are respectively given by

  • [JEE MAIN 2021]

$(p \to q) \leftrightarrow (q\ \vee  \sim p)$ is 

Negation of the statement $P$ : For every real number, either $x > 5$ or $x < 5$ is